Normobaric hyperoxia slows blood-brain barrier damage and expands the therapeutic time window for tissue-type plasminogen activator treatment in cerebral ischemia.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Prolonged ischemia causes blood-brain barrier (BBB) damage and increases the incidence of neurovasculature complications secondary to reperfusion. Therefore, targeting ischemic BBB damage pathogenesis is critical to reducing neurovasculature complications and expanding the therapeutic time window of tissue-type plasminogen activator (tPA) thrombolysis. This study investigates whether increasing cerebral tissue PO2 through normobaric hyperoxia (NBO) treatment will slow the progression of BBB damage and, thus, improve the outcome of delayed tPA treatment after cerebral ischemia. METHODS Rats were exposed to NBO (100% O2) or normoxia (21% O2) during 3-, 5-, or, 7-hour middle cerebral artery occlusion. Fifteen minutes before reperfusion, tPA was continuously infused to rats for 30 minutes. Neurological score, mortality rate, and BBB permeability were determined. Matrix metalloproteinase-9 was measured by gelatin zymography and tight junction proteins (occludin and cluadin-5) by Western blot in the isolated cerebral microvessels. RESULTS NBO slowed the progression of ischemic BBB damage pathogenesis, evidenced by reduced Evan blue leakage, smaller edema, and hemorrhagic volume in NBO-treated rats. NBO treatment reduced matrix metalloproteinase-9 induction and the loss of tight junction proteins in ischemic cerebral microvessels. NBO-afforded BBB protection was maintained during tPA reperfusion, resulting in improved neurological functions, significant reductions in brain edema, hemorrhagic volume, and mortality rate, even when tPA was given after prolonged ischemia (7 hours). CONCLUSIONS Early NBO treatment slows ischemic BBB damage pathogenesis and significantly improves the outcome of delayed tPA treatment, providing new evidence supporting NBO as an effective adjunctive therapy to extend the time window of tPA thrombolysis for ischemic stroke.
منابع مشابه
Normobaric hyperoxia reduces the neurovascular complications associated with delayed tissue plasminogen activator treatment in a rat model of focal cerebral ischemia.
BACKGROUND AND PURPOSE A major limitation of tissue plasminogen activator (tPA) thrombolysis for ischemic stroke is the narrow time window for safe and effective therapy. Delayed tPA thrombolysis increases the risk of cerebral hemorrhage and mortality, which, in part, is related to neurovascular proteolysis mediated by matrix metalloproteinases (MMPs). We recently showed that normobaric hyperox...
متن کاملOxygen or cooling, to make a decision after acute ischemia stroke
The presence of a salvageable penumbra, a region of ischemic brain tissue with sufficient energy for short-term survival, has been widely agreed as the premise for thrombolytic therapy with tissue plasminogen activator (tPA), which remains the only United States Food and Drug Administration (FDA) approved treatment for acute ischemia stroke. However, the use of tPA has been profoundly constrain...
متن کاملTime course of neuroprotection induced by in vivo normobaric hyperoxia preconditioning and angiogenesis factors
Objective(s):Every year, a large number of people lose their lives due to stroke. Stroke is the second leading cause of death worldwide. Surprisingly, recent studies have shown that preconditioning with hyperoxia (HO) increases tissue tolerance to ischemia, ultimately reducing damages caused by stroke. Addressed in this study are beneficial contributions from HO preconditioning into reduced har...
متن کاملCocktail treatment, a promising strategy to treat acute cerebral ischemic stroke?
Up to now, over 1,000 experimental treatments found in cells and rodents have been difficult to translate to human ischemic stroke. Since ischemia and reperfusion, two separate stages of ischemic stroke, have different pathophysiological mechanisms leading to brain injury, a combination of protective agents targeting ischemia and reperfusion respectively may obtain substantially better results ...
متن کاملThe Role of Peroxisome Proliferator Activator Receptor Alpha in Cerebral Ischemia-Reperfusion Injury; a Review Study
Peroxisome proliferator-activated receptor alpha (PPAR-α), which belongs to the nuclear receptor family of ligand-activated transcription factors, was first described as gene regulators for metabolic pathways including lipid metabolism, insulin sensitivity, and glucose homeostasis. Were raised. This nuclear receptor is widely expressed in various tissues, providing a wide range of effects to st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 46 5 شماره
صفحات -
تاریخ انتشار 2015